

IDEAL THEORY ON PRÜFER DOMAINS

FELIX GOTTI

PRIME IDEALS

Throughout this lecture, we assume that R is a commutative ring with identity.

Existence of Prime Ideals. Every proper ideal of R is contained in a maximal ideal (Corollary 2). To argue such a result, one needs to appeal to Zorn's lemma, which is a statement equivalent to the Axiom of Choice. Zorn's lemma states that a nonempty partially ordered set (poset) S contains a maximal element provided that every totally ordered subset of S has an upper bound. One can actually use Zorn's lemma to argue the following result, which is stronger than the fact that every proper ideal is contained in a maximal ideal.

Theorem 1. *Let R be a commutative ring with identity, and let I be a proper ideal of R . If M is a multiplicative submonoid of R disjoint from I , then there exists an ideal P that is maximal in the set consisting of all ideals of R disjoint from M and containing I . Moreover, P is prime.*

Proof. Let \mathcal{S} be the set of all ideals of R disjoint from M and containing I . The set \mathcal{S} is nonempty because $I \in \mathcal{S}$. Clearly, \mathcal{S} is a partially ordered set (under inclusion). In addition, if $\mathcal{T} := \{I_\gamma : \gamma \in \Gamma\}$ is a totally ordered subset of \mathcal{S} , then it is not hard to verify that $J = \bigcup_{\gamma \in \Gamma} I_\gamma$ is an ideal of R disjoint from M and containing I . Thus, J is an upper bound of \mathcal{T} in \mathcal{S} . Therefore Zorn's lemma guarantees the existence of a maximal element P in \mathcal{S} , which yields the first part of the theorem.

Now we show that P is indeed a prime ideal. Suppose, by way of contradiction, that $J_1 J_2 \subseteq P$ for ideals J_1 and J_2 of R none of them contained in P . Then both ideals $J_1 + P$ and $J_2 + P$ properly contain P , which means that they both intersect M . Take $p_1, p_2 \in P$, $j_1 \in J_1$ and $j_2 \in J_2$ such that $m_1 := p_1 + j_1 \in M$ and $m_2 := p_2 + j_2 \in M$. Thus, we see that

$$m_1 m_2 = p_1 p_2 + j_2 p_1 + j_1 p_2 + j_1 j_2 \in P + J_1 J_2 \subseteq P.$$

Since M is closed under multiplication, $m_1 m_2 \in P \cap M$, contradicting that P is disjoint from M . Hence P is a prime ideal. \square

As an immediate consequence of Theorem 1, we obtain the following result.

Corollary 2. *Let R be a commutative ring with identity. Then every proper ideal of R is contained in a maximal ideal.*

Given a proper ideal I of R , a *minimal prime ideal over I* is an ideal that is minimal in the set of all prime ideals of R containing I . A *minimal prime ideal* is, by definition, a minimal prime ideal over the zero ideal. Minimal prime ideals over a given ideal always exist.

Proposition 3. *Let R be a commutative ring with identity. If I is a proper ideal of R and P is a prime ideal containing I , then there exists a prime ideal contained in P that is minimal over all prime ideals containing I .*

Proof. Let \mathcal{P} be the set consisting of all prime ideals of R containing I . Since $P \in \mathcal{P}$, the set \mathcal{P} is nonempty. We consider \mathcal{P} as a poset under reverse inclusion. One can easily verify that the intersection of all the ideals in a decreasing chain of prime ideals is also a prime ideal (see Exercise 1). Therefore it follows from Zorn's lemma that \mathcal{P} has a maximal element, which is clearly a minimal prime ideal over I . \square

Corollary 4. *Every commutative ring with identity contains a minimal prime ideal.*

Unions and Intersections of Prime Ideals. The following proposition on prime ideals, which is called the Prime Avoidance Lemma, is often useful.

Proposition 5 (Prime Avoidance Lemma). *Let R be a commutative ring with identity, and let S be a subring of R . If for prime ideals P_1, \dots, P_n the inclusion $S \subseteq \bigcup_{i=1}^n P_i$ holds, then $S \subseteq P_j$ for some $j \in \llbracket 1, n \rrbracket$.*

Proof. Suppose, by way of contradiction, that $S \not\subseteq P_j$ for any $j \in \llbracket 1, n \rrbracket$, and further assume that n has been taken as small as possible. It is clear that $n \geq 2$. Then for every $j \in \llbracket 1, n \rrbracket$, we can take $s_j \in S$ such that $s_j \notin \bigcup_{i \neq j} P_i$. Since $s_1 + s_2 + \dots + s_n \in S \subseteq \bigcup_{i=1}^n P_i$, there is a $k \in \llbracket 1, n \rrbracket$ such that $s_1 + s_2 + \dots + s_n \in P_k$. The fact that $s_1 \notin \bigcup_{i=2}^n P_i$ ensures that $k = 1$. This implies that $s_2 + s_3 + \dots + s_n \in P_1$. Because P_1 is a prime ideal, $s_j \in P_1$ for some $j \in \llbracket 2, n \rrbracket$, contradicting that $s_j \notin \bigcup_{i \neq j} P_i$. \square

A multiplicative submonoid S of $R \setminus \{0\}$ is called *saturated* or *divisor-closed* provided that for all $x \in S$ if $y \in R$ divides x in R , then $y \in S$. It turns out that the complement of any saturated multiplicative submonoid of R is the union of prime ideals.

Proposition 6. *Let R be a commutative ring with identity, and let S be a subset of R . Then S is a saturated multiplicative submonoid of $R \setminus \{0\}$ if and only if $R \setminus S$ is the union of prime ideals.*

Proof. For the direct implication, suppose that S is a saturated multiplicative submonoid of $R \setminus \{0\}$. Now fix $x \in R \setminus S$. Because S is saturated $x \notin R^\times$, and so the principal ideal Rx is proper. Then it follows from Corollary 2 that x is contained in a prime ideal. Thus, $R \setminus S$ is the union of prime ideals.

Conversely, suppose that $R \setminus S$ is the union of prime ideals. Since no prime ideal contains 1, we see that $1 \in S$. To check that S is closed under multiplication, take $x_1, x_2 \in R$ with $x_1 x_2 \notin S$, then there exists a prime ideal P contained in $R \setminus S$ such that $x_1 x_2 \in P$, which implies that either $x_1 \in P$ or $x_2 \in P$, that is, either $x_1 \notin S$ or $x_2 \notin S$. Hence S is a multiplicative submonoid of $R \setminus \{0\}$. Finally, suppose that $x \in S$, and take $y \in R$ such that $y \mid_R x$. Observe that if $y \notin S$, then there would exist a prime ideal P' disjoint from S such that y , and therefore x , belongs to P' . Hence S is saturated. \square

Example 7. The group of units R^\times is clearly a saturated multiplicative submonoid of R^* . It is clear that the complement of R^\times is the union of prime ideals; for instance, by virtue of Corollary 2, we can take such a union to consist of all maximal ideals of R .

Example 8. Let R be an integral domain, and let S be the subset of R consisting of all elements that can be written as a product of primes. It is an easy exercise to verify that S is a multiplicative subset, where 1 can be thought of as the empty product of primes. Then the complement of S is the union of prime ideals. Observe that when R is an integral domain the complement of S consisting only of the zero prime ideal.

Example 9. The set consisting of all elements of R that are not zero-divisors is easily seen to be a saturated multiplicative submonoid of R^* . The complement $\mathcal{Z}(R)$, that is, the set of zero-divisors of R , is then the union of prime ideals of R . The prime ideals maximal with respect to the property of being contained in $\mathcal{Z}(R)$ will be useful in coming lectures.

Characterizations of PIDs, UFDs, and Noetherian Rings. We can certainly use prime ideals to characterize PIDs, UFDs, and Noetherian rings. We proceed to argue this in the next three results.

In a PID, by definition, every ideal is principal. We can actually characterize PIDs by imposing the condition of being principal only for prime ideals.

Theorem 10. *Let R be an integral domain. Then R is a PID if and only if each prime ideal of R is principal.*

Proof. The direct implication follows directly from the definition.

For the reverse implication, suppose that every prime ideal of R is principal. Assume, by way of contradiction, that R is not a PID, and so that there is an ideal of R that is not principal. Then the set \mathcal{S} consisting of all non-principal ideals of R is a nonempty partially ordered set. Suppose that $\{I_\gamma : \gamma \in \Gamma\}$ is a chain in \mathcal{S} . It is not hard to

verify that $I := \bigcup_{\gamma \in \Gamma} I_\gamma$ is a non-principal ideal of R and, therefore, an upper bound for the given chain. Then \mathcal{S} contains a maximal element M by Zorn's lemma.

Since M is not principal, it cannot be prime. Thus, there exist $x, x' \in R \setminus M$ such that $xx' \in M$. Since the ideals $I := M + (x)$ and $I' := M + (x')$ properly contain M , the maximality of M in \mathcal{S} guarantees the existence of $\alpha \in R$ such that $I = (\alpha)$. Define $K := (M : I) = \{r \in R : rI \subseteq M\}$. One can easily check that $I' \subseteq K$, and so $M \subsetneq K$. So K must be principal, and we can take $\beta \in R$ such that $K = (\beta)$.

It follows from the definition of K that $KI \subseteq M$. We claim that the reverse inclusion also holds. To show this, take $a \in M$. Since $M \subseteq I$, we can write $a = r\alpha$ for some $r \in R$. Observe that $r \in K$ and, therefore, $a = r\alpha \in KI$. Hence $M \subseteq KI$. Thus, $M = KI = (\alpha\beta)$, contradicting the fact that M belongs to \mathcal{S} . \square

As mentioned earlier, we can also characterize UFDs in terms of prime ideals.

Theorem 11. *Let R be an integral domain. Then R is a UFD if and only if each nonzero prime ideal contains a prime element.*

Proof. For the direct implication, suppose that R is a UFD, and let P be a nonzero prime ideal of R . Now take a nonzero $r \in P$, and use the fact that R is a UFD to write $r = p_1 \cdots p_k$ for some prime elements p_1, \dots, p_k in R . As P is prime, $p_j \in P$ for some $j \in \llbracket 1, k \rrbracket$.

Conversely, assume that every nonzero prime ideal of R contains a prime element. Let S denote the set of elements of R that can be written as a product of primes. We have seen before that S is a saturated multiplicative subset and, therefore, it follows from Proposition 6 that $R \setminus S$ is the union of prime ideals. Now fix $x \in R \setminus S$. Since S is saturated, the ideal Rx is disjoint from S and, therefore, Theorem 1 ensures the existence of a prime ideal P disjoint from S such that $Rx \subseteq P$. As every nonzero prime ideal contains a prime element, $P \cap S = \emptyset$ implies that P is the zero ideal, and so $x = 0$. Thus, every nonzero element of R is a product of primes, which means that R is a UFD. \square

We conclude this lecture with the statement of a result that is often referred to as Cohen's theorem, which is a characterization of Noetherian domains in terms of prime ideals. A proof of this result is outlined as an exercise.

Theorem 12. *Let R be a commutative ring with identity. Then R is Noetherian if and only if each prime ideal of R is finitely generated.*

EXERCISES

Exercise 1. Let R be a commutative ring with identity, and let \mathcal{C} be a chain of prime ideals of R . Prove that $\bigcap_{I \in \mathcal{C}} I$ and $\bigcup_{I \in \mathcal{C}} I$ are also prime ideals.

Exercise 2. Let R be a commutative ring with identity, and let p and q be prime elements of R such that p is not a zero-divisor. Prove that $Rp \subseteq Rq$ implies that $Rp = Rq$.

Exercise 3. Let R be a commutative ring with identity, and let P and Q be prime ideals of R such that $P \subsetneq Q$. Prove that there exist prime ideals P' and Q' of R satisfying the following two conditions:

- $P' \subsetneq Q'$, and
- if $P' \subseteq J \subseteq Q'$ for some prime ideal J , then $J \in \{P', Q'\}$.

Exercise 4. Let R be an infinite integral domain. Prove that if R^\times is finite, then R has infinitely many maximal ideals.

Exercise 5. Let R be a commutative ring with identity. Prove that if I is not finitely generated (resp., not principal, not countably generated) and is maximal among all ideals of R that are not finitely generated (resp., not principal, not countably generated), then I is prime.

Exercise 6. Let R be a commutative ring with identity. Prove the following statements.

- (1) If $a \in R$ and I is an ideal of R such that $I + Ra$ and $(I : Ra)$ are finitely generated, then I is finitely generated.
- (2) If the collection \mathcal{S} of all ideals of R that are not finitely generated is nonempty, then \mathcal{S} has a maximal element.
- (3) If such a maximal element from the previous statement exists, then it is a prime ideal of R .
- (4) Cohen's theorem: R is a Noetherian ring if and only if every prime ideal of R is finitely generated.